多项式优美的舞蹈
多项式
优美的舞蹈
根据《义务教育数学课程标准》规定,因式分解的考察内容是:提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是正整数)。其中要求等级为C(即掌握:能在理解的基础上,把对象运用到新的情境中)。
把一个多项式化成几个整式的积的形式叫作因式分解,也叫分解因式。
因式分解是代数式恒等变形中的重要一种手段,它不仅仅在多项式的除法、简便运算等中有直接的应用,并为分式的约分与通分、解一元二次方程及高中后续知识的学习奠定了基础。
因式分解除了提公因式法、公式法,我们还会经常用到十字相乘法、换元法,偶尔大家也可以尝试一下分组分解法、配方法、待定系数法等。这些方法对于促进我们数学思维发展、能力提升有很大帮助!今天小编和大家分享以下七种方法,期待对大家有些许帮助!
方法一:提公因式法
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。各项都含有的公共的因式叫做这个多项式各项的公因式。公因式可以是单项式,也可以是多项式。
方法二:公式法
如果把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法。
方法三:十字相乘法
形如下列两种式子:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。这种分解因式的方法叫作十字相乘法。
方法四:换元法
选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种分解因式的方法叫做换元法。
方法五:分组分解法
通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,这种分解因式的方法叫做分组分解法。
方法六:配方法
对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种分解因式的方法叫做配方法。
方法七:待定系数法
在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数。利用多项式恒等的性质列方程求出未知数的方法叫作待定系数法。
总之,我们在遵循一提(公因式)、二套(公式)、三检验(不能分解)的一般分解因式的步骤前提下,对于比较复杂的问题还可以考虑其他方法进行因式分解!
#欢迎挑战#
将下列多项式分解因式
end