我国是世界上最早发现勾股定理的国家,但为什么外国人说不是

10-17 生活常识 投稿:管理员
我国是世界上最早发现勾股定理的国家,但为什么外国人说不是

勾股定理是一个基本的几何定理,直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2 。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组成a2+b2=c2的正整数组(a,b,c)。(3,4,5)就是勾股数。常见勾股数有(3,4,5)(5,12,13)(6,8,10)。

勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

1955年,希腊发行了一张邮票,图案由三个棋盘排列而成,这是为纪念二千五百年前一个学派和宗教团体——毕达哥拉斯学派成立以及它在文化上的贡献,这个图案是对数学上一个非常重要定理的说明。

在我国,人们称它为勾股定理或商高定理;在欧洲,人们称它为毕达哥拉斯定理。为什么一个定理会有这么多名称呢?

在中国古代大约是西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。周公问商高:“天不可阶而升,地不可将尽寸而度。”这句话意思:天的高度和地面的一些测量的数字是怎么样得到的呢?商高说:“故折矩以为勾广三,股修四,经隅五。”商高答话的意思是:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。即我们常说的勾三股四弦五。“勾三,股四,弦五”是勾股定理的一个最著名的例子。

什么是“勾、股”呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”。

后来人们就简单地把这个事实说成“勾三股四弦五”。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫做“商高定理”。

关于勾股定理的发现,《周髀算经》上说:“故禹之所以治天下者,此数之所由生也。”“此数”指的是“勾三股四弦五”,这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。

青朱出入图,是东汉末年数学家刘徽根据“割补术”运用数形关系证明勾股定理的几何证明法,特色鲜明、通俗易懂。

刘徽描述此图,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂。开方除之,即弦也。”其大意为,一个任意直角三角形,以勾宽作红色正方形即朱方,以股长作青色正方形即青方。将朱方、青方两个正方形对齐底边排列,再以盈补虚,分割线内不动,线外则“各从其类”,以合成弦的正方形即弦方,弦方开方即为弦长。

青朱出入图如下:

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2 = c2;

化简后便可得:

a2+ b2= c2

亦即:c=√(a2+ b2)

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。

2002年第24届国际数学家大会(ICM)的会标即为该图。

欧洲人则称勾股定理为毕达哥拉斯定理。毕达哥拉斯是古希腊数学家,他是公元前五世纪的人。希腊另一位数学家欧几里德在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,因而国外一般称之为“毕达哥拉斯定理”。并且据说毕达哥拉斯在完成这一定理证明后欣喜若狂,而杀牛百只以示庆贺。因此这一定理还又获得了一个带神秘色彩的称号:“百牛定理”。后来他就把这个定理称为'毕达哥拉斯定理',就流传开了。

尽管希腊人称勾股定理为毕达哥拉斯定理或“百牛定理”,法国、比利时人又称这个定理为“驴桥定理”,但据推算,他们发现勾股定理的时间都比我国晚。我国是世界上最早发现勾股定理这一几何宝藏的国家!

中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。

本文为头条号作者原创。未经授权,不得转载。

声明:伯乐人生活网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系ttnweb@126.com